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Typical features of glass phenomenology such as the Vogel-Fulcher law, the Kauzmann paradox, and the
Adam-Gibbs relationship are shown to follow from the recently discovered mapping of glasses to Ising spin
glasses in a magnetic field. There seems to be sufficient universality near the glass transition temperature Tg

such that study of the spin-glass system can provide semiquantitative results for supercooled liquids.
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I. INTRODUCTION

Under fast enough cooling or densification, materials
which are as diverse as molecular and polymeric liquids,
colloidal suspensions, granular assemblies, and molten mix-
tures of metallic atoms may form glasses �1�. These are
amorphous states that may be characterized mechanically as
a solid, but lack long-range crystalline order. Despite all the
work devoted to the subject, the mechanisms responsible for
the vitrification processes are not well understood and the
transition to the glassy state remains one of the most contro-
versial problems in condensed matter physics.

In a recent paper �2�, using an effective potential method,
a replica formalism has been set up to describe supercooled
liquids. This approach shows that the thermodynamics of
these systems near their glass transition temperature Tg is
equivalent, in the sense of “universality classes,” to that of
Ising spin glasses in a magnetic field h �2�. Spin-glass droplet
scaling ideas �3,4� were used to discuss the consequent ex-
pected glass phenomenology. This approach would be appro-
priate if the length scales of cooperatively rearranging re-
gions near Tg were many times larger than the intermolecular
separation. In fact, recent studies �5� have indicated that this
length scale is rather modest and only a few intermolecular
distances. As a consequence, glasses are not really in the
regime where droplet scaling ideas are appropriate. We shall
therefore examine in this paper the glass phenomenology
which arises when the correlation length is not large but
instead is in the precursor regime to the droplet scaling limit.
Rather to our surprise, we are able to find in this regime all
the characteristic features of glass phenomenology such as
the Vogel-Fulcher relation �1�, the Kauzmann temperature
�6�, the Adam-Gibbs relation �7�, etc

We shall study in particular the Edwards-Anderson �EA�
Ising spin-glass model �8� in the presence of an external
magnetic field h both in one dimension �1D� and in three
dimensions �3D�. The behavior in both dimensions is similar,
but the 1D case can be studied more thoroughly as its equi-
librium properties can be determined exactly by means of a
renormalization group approach and its dynamical properties
are accessible via Monte Carlo simulations. Even in the 1D
case, the model is able to mimic most of the experimental
observations on supercooled liquids. An apparent Kauzmann
paradox �6� is found, accompanied by a growing �but still
modest at the fields which we use� length scale � and by an
apparent divergence of the relaxation time as in the Vogel-

Fulcher �VF� equation with TVF=TK �1�. There is thus an
apparent thermodynamical and dynamical singularity at a fi-
nite temperature TK, but it is not a true transition. TK is just a
crossover temperature such that when T�TK the growth of �
as T decreases has largely ceased. The 3D case cannot be
solved exactly but has been studied within the Migdal-
Kadanoff approximation �MKA� �9,10�, and a similar glass
phenomenology emerges. But there are some significant dif-
ference between the 1D and 3D cases, due to the fact in 1D
there is no finite-temperature spin-glass transition, but only a
diverging length scale as T→0 when h=0, whereas in 3D,
there is in zero field a finite-temperature transition, and so in
order to have a length scale of only a few intermolecular
diameters at low temperatures, a large field has to be applied.
Our work within the MKA in 3D does not provide a quanti-
tatively accurate picture, but the results are so encouraging
that it would seem worthwhile to attempt to get more quan-
titative results, probably by use of Monte Carlo methods.
Unfortunately glass time scales are so long compared to mo-
lecular collision time scales that realistic simulations will be
challenging.

The investigations presented here suggest a new frame-
work to understand glass behavior: features of the intermo-
lecular potential and the density determine the value of the
field h and the temperature scale, but once these are fixed,
there is sufficient universality left near the glass transition Tg
that the mapping to Ising spin glasses in a field provides a
semiquantitative account of both the thermodynamic proper-
ties of glasses and those dynamical features which can be
undestood in terms of flipping and cooperative rearranging
of spin domains of linear extent � sitting in a random effec-
tive magnetic field, requiring free energy activation over bar-
riers.

This paper is organized as follows: in Sec. II we solve the
EA Ising spin glass in an external magnetic field in one di-
mension by using a decimation approach and we study its
dynamical properties by performing Monte Carlo simula-
tions; we then discuss the connection to the phenomenology
of glasses. In Sec. III we examine the three-dimensional case
by means of the Migdal-Kadanoff approximation. Finally, in
Sec. IV, we present some concluding remarks.

II. EA ISING SPIN GLASS IN ONE DIMENSION

The EA Ising spin-glass Hamiltonian in 1D in the pres-
ence of a uniform external magnetic field reads
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H = − �
i

Ji�i�i+1 − h�
i

�i, �1�

where the spins �i can take values ±1 and the nearest-
neighbor couplings Ji are independent of each other and
Gaussianly distributed with zero mean and standard devia-
tion J. In principle h could be a function of temperature but
we shall regard it as a temperature independent constant,
whose magnitude is chosen in both 1D and 3D so that the
low-temperature spin-glass correlation length � is of the or-
der of a few lattice spacings and so is comparable to the glass
correlation length of real glasses at Tg �5�. We evaluate the
free energy of the system by using an iterative real-space
renormalization group technique �9,10�. It consists of tracing
out every other spin in the system, thereby generating new
effective interactions between the remaining spins which sit
in new magnetic fields:

�
�i+1=±1

exp���Ji
�n��i�i+1 + Ji+1

�n� �i+1�i+2 + �
j=i

i+2

hj
�n�� j�	

= exp�Wi+1
�n+1� + ��Ji

�n+1��i�i+2 + hi
�n+1��i + hi+2

�n+1��i+2�� .

�2�

At the nth step in the decimation process, Ji
�n� and hi

�n� have
probability distributions, which evolve with the iteration.
In 1D, the EA model has a genuine critical point at
�T=0,h=0�, corresponding to a nontrivial fixed point of the
recursion relations. Conversely, at any finite temperature and
magnetic field, the system evolves toward a trivial “random
paramagnetic” fixed point: the variance of the effective cou-
plings decreases under iteration and approaches zero,
whereas the effective magnetic fields have a distribution
which approaches a Gaussian, with mean h �i.e., the initial
value of the magnetic field� and variance �h�T ,h�.

For each realization of the quenched disorder, the free
energy fJ can be determined exactly by summing the spin-
independent terms Wi

�n� which are generated at each step of
the decimation �10�. Once the average over the disorder is
taken, f = �fJ�J, the entropy density is obtained using
S= 
−�f /�T
h. In Fig. 1�a� the entropy is plotted versus the
temperature for three different values of the magnetic field,
h=0.05, 0.125, and 0.2. The figure shows a temperature
range in which the entropy decreases linearly and would be
extrapolated to vanish at TK�h� as

S � kBc�h��T − TK�h�� , �3�

demonstrating that the model has a “Kauzmann paradox”
similar to that observed in supercooled liquids. However,
below a crossover temperature T���Tg�, the entropy deviates
from linearity and does not vanish completely except at
T=0.

By computing the derivative of the free energy with re-
spect to the variation of the magnetic field on two different
sites, it is possible to evaluate the equilibrium connected cor-
relation function

��i�i+lc
2 = �T2� �2 ln Z

���hi����hi+l�
�

�hi=�hi+l=0
	2

. �4�

From the exponential decay of the correlation function
���i�i+lc

2�J�exp�−l /��, we extract the equilibrium correla-
tion length of the system, �, plotted in Fig. 1�b� for the same
values of the magnetic field as before. � increases as the
temperature is decreased, but at low enough temperatures
�T�T��, it bends over and approaches a finite value at
T=0, proportional to h−2/3, as predicted by the droplet
picture �3,4� on equating the energy to flip a domain of size
� to the magnetic field energy which could be gained,
J���h�d/2��kBTK�, and for d=1, �=−1.

In order to establish a connection with the dynamical fea-
tures of glass-forming liquids, we have studied the dynami-
cal properties of the 1D model by performing Monte Carlo
simulations of a system of 1024 spins. We have computed
the spin-spin cumulant autocorrelation function, defined as

C�t,tw� = � 1

N
�

i

��i�t + tw��i�t�c�
J

. �5�

For large enough waiting times tw, the system reaches sta-
tionarity, characterized by time transitional invariance—i.e.,
C�t , tw�=C�t�. Although the mapping established in Ref. �2�
is explicit only for equilibrium quantities and might not ex-
tend to dynamical features, we find that, in analogy with
glass formers, C�t� is very well fitted by a stretched expo-
nential form C�t��exp�−�t /����, where ��T ,h� is the system
relaxation time. The spin-spin autocorrelation function is
plotted in Fig. 2 for several values of the temperature.

FIG. 1. �Color online� One-dimensional EA model in a field for
h=0.05 �solid line and circles�, h=0.125 �dashed line and dia-
monds�, and h=0.2 �dash-dotted line and triangles�. �a� Entropy per
spin S; �b� equilibrium correlation length �; �c� Adam-Gibbs rela-
tion, temperature dependence of S�; �d� logarithm of the relaxation
time � as a function of the temperature. The curves correspond to
the Vogel-Fulcher fits, Eq. �6�, with TVF=TK. The arrows indicate
the Kauzmann temperatures TK, whereas the vertical dashed lines
correspond to the crossover temperatures T*.
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The relaxation time is plotted in Fig. 1�d� for h=0.05,
0.125, and 0.2 as a function of the temperature. Similarly to
what happens in supercooled liquids �1� a Vogel-Fulcher law

log � = log �0 +
DTVF

T − TVF
�6�

is able to fit quite accurately the data for each value of the
magnetic field �over four to five decades�, with the VF tem-
perature TVF set equal to the Kauzmann temperature TK �1�.
Again, the dynamical singularity is only apparent, since the
relaxation time diverges only at T=0 according to an Arrhen-
ius law. At low enough temperature � deviates from the VF
law. Such a departure starts to emerge for h=0.2 when
T�0.25. Interestingly, the onset of the deviation from the
VF fit seems to coincide with the crossover temperature T* at
which the entropy deviates from linearity. This behavior is
consistent with the Adam-Gibbs �AG� relation �7�
log �=AAG+BAG /TS�T�, which holds in the temperature
range explored by the simulations, as shown in the inset of
Fig. 2. The original derivation �7� of the AG equation relies
on the assumption of the existence of correlated regions of
size � rearranging cooperatively and on the hypothesis that
S�d�const. As shown in Fig. 1�c�, this relation seems to
hold in the intermediate temperature window explored in the
simulations, whereas it breaks down below T*.

One might wonder whether the whole entropy, S, which
we have calculated, plays the role of the “configurational
entropy” for supercooled liquids in the AG relation. When
T�TK, the thermodynamics is dominated by the flipping of
the few single spins for which the local field is comparable to

T. For T	TK, the thermodynamics is dominated by the ex-
citation of “droplets” of size �. Hence it is tempting to regard
the very-low-temperature entropy in our spin-glass simula-
tions as being the contribution to the entropy from a single
state and that the configurational entropy is that which arises
when many droplets are thermally excited. We have studied
also the “configurational entropy” which is obtained by sub-
tracting from S the linear contribution which fits the very-
low-temperature entropy. However, the same qualitative re-
sults were found with this definition of S.

Due to the success of the AG relation, it is natural to
expect that the dynamics of the system will be dominated by
the flipping of spin domains of size �. Since the variance of
the the effective couplings decreases under iteration and ap-
proaches zero after a few iteration steps, whereas the effec-
tive magnetic fields are Gaussianly distributed with mean h
and variance �h�T ,h�, one might guess that the dynamics of
the system is equivalent to that of a chain of noninteracting
spin domains of linear extent proportional to �, sitting in a
random external field. Notice that this situation has been
studied in Ref. �11�. Taking into account the time to pass a
spin flip through the domain, which involves the breaking of
the largest bond in the domain whose magnitude will be
denoted by Li, the time to reverse each spin domain will be
of the form �
exp��2Li+2hi� /T�. If the distribution of the Li

is also Gaussian, the distribution of the sum �Li+hi� will be
another Gaussian of variance �L

2 +�h
2T. According to Ref.

�11�, this leads to the following expressions for the relaxation
time ��exp�4��h

2+�L
2� /T2� and for the stretching exponent

��C�1+4��h
2+�L

2� /T2�−1/2, with a constant C=1. We have
verified that these formulas work quite well in describing the
dynamics of the system in one dimension �with �L�0.22�.
Nevertheless, they are not perfect: the constant C is larger
than 1 �C�1.5� and �L is too small. These discrepancies
could be because the time it takes to flip the spins by break-
ing the largest bond on a line of spins of length � has not
been handled with sufficient accuracy. The largest bond has
its own probability distribution, which is just not a Gaussian.
A full theory would be complicated. However, in 3D much
larger values of the external field have to be taken to keep the
magnitude of the correlation length only a few lattice spac-
ings at low temperatures, so one could reasonably expect that
the relaxation time is dominated just by the random fields
alone.

The fragility D and the Kauzmann temperature TK �see
Eq. �6�� are both affected by the magnetic field h. More
precisely, D decreases as h is increased �i.e., stronger glasses
are described by larger fields�, whereas TK �and T*� increases
as h is increased. In the main frame of Fig. 3, the dependence
of TK on the fragility is plotted. We also plot the behavior of
another two important quantities: the jump in the specific
heat �Cp and the stretching exponent � �at T=0.3�. The
former can be estimated by �arbitrarily� setting Tg�T*, so
that �Cp�c�h�T*, c�h� being the slope of the entropy in the
linear regime �see Eq. �3��; the latter can be directly com-
puted from numerical simulations.

Interestingly enough, � is found to be an increasing func-
tion of D, whereas �Cp decreases as D increases, in agree-
ment with observations on supercooled liquids �12�.

FIG. 2. �Color online� Main frame: time-dependent spin-spin
autocorrelation function C�t� as a a function of log t for h=0.05 and
T=0.45 �squares�, T=0.35 �triangles�, T=0.275 �circles�, and
T=0.225 �diamonds�. The data are averaged over 16–32 indepen-
dent realizations of the disorder and over tw. The dashed line cor-
respond to stretched exponential fits C�t��exp�−�t /���� with
0.2���0.3. Inset: Adam-Gibbs relation: logarithm of the relax-
ation time � as a function of 1/TS for h=0.05 �circles�, h=0.125
�diamonds�, and h=0.2 �triangles�. The straight lines are guides for
the eye.
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III. RESULTS IN THREE DIMENSIONS

We now turn to the 3D case, which is most relevant for
real supercooled liquids. We have evaluated the free energy
of the EA spin-glass model in a field by means of the MK
approximation, a real-space renormalization group technique
that gives approximate recursion relations for the flow of the
coupling constants and magnetic fields distributions �9,10�.
We have used the “bond moving” procedure, where the
bonds on the 3D lattice are moved before each decimation
step, so that no higher-order couplings are generated �10�: in
a d-dimensional lattice, 2d−1 bonds are superimposed and
added up, whereas the “naked” spins that are left behind
have no couplings. Taking the trace over the spins that are on
the main bonds leads to the coupling constants, according to
Eq. �2�, between neighboring spins on the coarse-grained
lattice. The decimation procedure is iterated n times on a
lattice of size L=2n. There is a flexibility in the MK renor-
malization scheme as to how the fields are moved. We have
treated the field terms as belonging to bonds: when a bond is
moved we also move all its field terms to the end that is to be
traced over next �10�.

In 3D, within the MKA, when h=0 and T�Tc,
Tc�1.78, the variance of the effective couplings grows in-
definitely under iteration. For finite values of the magnetic
field there is no evidence of a de Almeida–Thouless line
�13�. The variance of the couplings might grow initially for
low enough fields and/or temperatures, but it always de-
creases and eventually vanishes after a sufficient number of
iteration steps, just like in 1D. The average value of the field
distribution equals the initial value of the uniform magnetic
field h, whereas the width of the distribution saturates at a
finite value �h�T ,h�.

The temperature dependence of the entropy per spin and
the correlation length �, obtained within the MKA from the
exponential decay of the variance of the effective coupling,
Jij

�n�, which decreases as exp�−2n /�� at large n, are plotted in
Figs. 4�a� and 4�b� for h=2.0, showing a scenario very simi-
lar to that found in 1D: there is a temperature range in which
the entropy per site, S, is linear and is extrapolated to vanish
at a finite Kauzmann temperature TK; a crossover occurs at a
higher temperature T*, where the entropy deviates from lin-
ear behavior. The correlation length � grows as the tempera-
ture is decreased and approaches a finite value at T=0.

We also mention that, similarly to the 1D case, there is a
modest range of values of the external magnetic field h �for
1.8�h�2.5� for which the AG relation S�3�const holds in
the temperature region T�T*. This AG relation, however,
breaks down below T* and at high temperatures and in con-
trast to the 1D case is of less utility.

Due to the magnitude of the relaxation times, standard
Monte Carlo simulations of the 3D model are more challeng-
ing than in the 1D case, and we will leave them for future
investigations. However, since the values of interest of the
magnetic field are much larger than in 1D, one can surmize
that the flipping of a spin domain of size � sitting in a ran-
dom external magnetic field Gaussianly distributed and with
variance �h

2 is the dominant dynamical process; hence, the
energy barriers involved in such processes might account
reasonably well for the system’s relaxation time, leading to
ln ��4�h

2 /T2 �11�. Following this hypothesis, we have veri-
fied that exp�4�h

2 /T2� can be well fitted by a VF law with
TVF=TK for T	T*. From the VF fit of this quantity it is also
possible to extract the fragility D in the 3D case. In the inset
of Fig. 3, TK and �Cp are plotted as a function of D, showing
they have very similar behavior to that found in 1D.

The domain size � according to droplet scaling is given by
equating the cost of flipping a droplet of size �, ��, to the
field energy which might be gained, h�d/2. As in 3D the ex-

FIG. 3. �Color online� Main frame: Kauzmann temperature TK

�solid line and circles�, jump in the specific heat �Cp �dashed line
and squares�, and stretching exponent � �dotted line and triangles�
as a function of the fragility D extrected from the VF fit of log � in
1D. Inset: Kauzmann temperature TK �solid line and circles� and
jump in the specific heat �Cp �dashed line and squares� as a func-
tion of the fragility D extracted from the VF fit of exp�4�h

2 /T2� in
3D.

FIG. 4. �Color online� Three-dimensional EA model within the
MK approximation for h=2.0. �a� Entropy per site S; �b� correlation
length �. The vertical arrows and the vertical dotted lines corre-
spond, respectively, to TK and T*.

M. TARZIA AND M. A. MOORE PHYSICAL REVIEW E 75, 031502 �2007�

031502-4



ponent � is small ��0.2� �3�, it follows that �h
2�h2�d

�const., which implies that the AG relation ln ��A /TS
should hold.

The stetching exponent � would be expected to be
�1+4�h

2 /T2�−1/2, provided again that the time taken to pass
the domain wall through the domain is not significant.

One feature of the MKA study in 3D is that the configu-
rational entropy seems to be smaller than the quoted values
near the glass transition, perhaps by as much as a factor of 3
�12�. In the derivation of the mapping to spin glasses �2� one
can see that the field h will be a function of both the tem-
perature and density, rather than simply being a temperature-
independent constant as we have assumed here throughout
for simplicity. Allowing for this temperature dependence
could significantly change the entropy. For example suppose
h2=h0

2+b2T2; then, the high-temperature limit of the entropy
is S=ln�2 cosh b� and, by adjusting b, can be made as large
as desired.

IV. CONCLUSIONS

The mapping between supercooled liquids and spin
glasses in an external magnetic field, proposed in Ref. �2�,

thus seems to provide a semiquantitative explanation of the
properties of supercooled liquids including the Kauzmann
paradox, the Vogel-Fulcher behavior of the relaxation time,
the stretched exponential decays of correlation functions, a
growing length scale, and the Adam-Gibbs relation in the
regime T�Tg, which is the precursor regime accessed by the
experiments, where the correlation length is growing with
temperature but is still only a few intermolecular distances.
The droplet scaling limit studied in Ref. �2� is appropriate
only when the correlation length is much larger than this.
The large time scales which exist below the glass transition
temperature Tg prohibit the taking of equilibrium data below
it, and so the apparent thermodynamic and dynamical singu-
larities at TK cannot be accessed. In our scenario, TK is only
a crossover temperature at which the growing correlation
length saturates to a constant value.
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